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Significant progress haa recently been achieved in the lattice gauge 
theory cdculationa required for extracting the fundamental parametera 
of the standard model from experiment. Retent lattice determinations 
of suck quantities (L~I the kaon B parameter, the mau of the b quark, 
and the strong coupling constant have pmduced results and uncertain- 
tia Y good or better than the bat wnventiond determinations. Many 
other calculations aacid to extracting the fundamental parametera of 
the standard model from experimentd data are undergoing very active 
development. I review the d&us of such applicationa of lattice QCD 
to standard model phenomenology, and discus the proape& for the 
near future. 

INTRODUCTION 

Our only existing experimental clues about the theory that lies beyond the 
standard model are the apparently arbitrary fundamental parameters of the 
standard model. The only experiments guaranteed to determine the origin of 
electroweak symmetry breaking and thus new clues into beyond the standard 
model physics were to have been performed at the SSC. The fundamental 
parameten of the standard model may prove to be our only window onto 
beyond the standard model physics for some time, unless we get lucky with 
a lower energy accelerator. The nonperturbative calculations which allow 
the extraction of these parametera from yxperiment will therefore take on 
increasing importance over the next few years. 

The last few years have seen significant progress in some of these cdcula- 
tions with lattice QCD. Some of the simplest ones have now been completed 
with first attempts at quantitative estimation of all uncertainties. Lattice cal- 
culations of the mass of the b quark. mb, and the Laon E parameter, BK. are 
now believed by their authors to be more accurate than the best conventional 
phenomenological determinations of these quantities. Determinations of the 
strong coupling constant, a., are now of comparable quality to the best con- 
ventional determinations and will soon be sig&%xntly better. Many other 
calculations crucial to standard model phenamenology are undergoing rapid 
development. 
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The foundations of the current advances were laid around 1980 with the 
development of explicit expressions for hadron masses and other hadronic 
quantities by Weingarten and by Parisi and their collaborators. (1) The re- 
cent developments have arisen in part because of dramatic developments in 
machine and algorithmic technology that will not be reviewed here. (2) The 
computers on which these calculations have been performed are around 10,000 
times as powerful BS the Vaxes on which the first hadron spectrum calculations 
were performed around 1980. Likewise, the speeds of algorithms for the in- 
clusion of sea quark loops from first principlea (algorithms for “unquenched” 
calculations) have increased by an even larger factor, one which is hard to 
measure because of the extreme slowness of the original dgorithms.Numerous 
other methodological and technical improvements have also contributed to 
the reliability of the calculations. 

These developments have occurred also because of an improved perspective 
regarding which lattice calculations are easiest to perform reliably, and are 
most useful to particle physics. Although the desire to understand the physics 
of nuclear energy levels was the initial spur to the study of strong interactions, 
the calculation of the energy levels of the uranium nucleus is not currently 
seen as the most promising test of QCD, or of standard model or beyond 
the standard model physics. Likewise, although the ability to calculate the 
proton mass from first principles seemed like a Holy Grail when lattice gauge 
theory wacl invented 20 years ago, the mass of the proton and the rest of the 
light hadron spectrum is not the only or even the most important application 
of lattice gauge theory. The pseudoscalar mesone n, K, D, and B, and the 
quarkonia (the +‘s and T’s) are significantli simpler than the proton and other 
hadrons, as will be discussed. They will provide good tests of lattice methods 
and significant information about the standard model before calculations of 
the proton mass do. 

QCD Phenomenology 

The ~5 and T Sy&nu 

The simplest hadrons to investigate on the lattice are the $ and T systems. 
Quark&a are smaller than most hadrons, resulting in smaller finite volume 
errors. Propagators for heavy quarks can be calculated much more rapidly 
than tight quark propagators, and no extrapolation down to the physical quark 
ma89 is required as it is for light quarks. These facts have been particularly 
emphasized in Ref. (8). 

Quark&a have received relatively little attention from lattice theorists un- 
til recently. The reason may be that they have been well understood for a long 
time on the basis of nonrelativistic potential models (7), which become rigor- 
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FIG. 1. The mass spectrum of the ‘I- system, L = 0 states (IS, 255, and 3s) and 
L = 1 states (1P and ZP). Mass difference in GeV with the pound state is shown. 
Solid lines are experiment. 

ous predictions of QCD in a well-defined limit, mq - co. This fact should, to 
the contrary, place them among the most interesting and important of current 
lattice calculations because of the possibility of using nonrelativistic methods 
and reasoning to: 

. guide physics expectations, and 

l monitor the accuracy of approximations (finite lattice spacing a, finite 
volume V, quenched) and make corrections. 

For example, the nonrelativistic picture tells us that the hyperfine splitting 
in quarkonia is a short distance quantity, sensitive to &Y. B$, the dimension 
five operator which is the leading operator which must be added to the action 
to correct for finite lattice spacing errors. Thii quantity is useful in testing and 
fine tuning the approximations used in lattice calculations. A spin-averaged 
quantity like the lP-1S splitting should be insensitive to these leading finite 
lattice spacing errors. It is also insensitive to the precise value of the quark 
mass used, since it is almost the same for the li, and f systems. It is a likely 
candidate to yield information about particle physics, as in the extraction of 
the strong coupling constant, to be discussed below. 

The most extensive investigation of finite lattice spacing errors which has 
yet been performed in a phenomenological calculation has recently been com- 
pleted by the NRQCD collaboration for the li, and T systems. They use 
the form&m of Nonrelativistic QCD (g), a discretized version of the non- 
relativistic expansion of the quark action. In previous work reported in Ref. 
(9), coeficients of operators for finite lattice spacing and nonrelativistic cor- 
rections were evaluated at tree level. Corrections were then determined by 
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FIG. 2. The WZW= function U(r) of the T meson 86 s function of r in lattice units. 

evaluating the operator expectation values in potential model wave functions. 
This year, these expected corrections were verified from first principles by 
including the required operators directly in the lattice calculations, with coef- 
ficients evaluated to one loop. (11) The resulting spectrum for the T is shown 
in Fig. 1. The mass of the T was used sa an input (to fix the quark mass), 
and the overall energy scale (the lattice sptiing in physical units) was chosen 
to obtaining the best fit to the remaining masses. 

Fig. 2 shows the Coulomb gauge wwe function, calculated on a 24’ lattice 
with Wilson fermions. (10) Unlike a QED-like pure Coulomb potential which 
would produce B wave function with the form S(r) o( exp(-omt), QCD pro- 
duces nonrelativistic hound states with wave functions that fall mnre slowly at 
short distances (smaller effective (1 at short distances) and faster at long dis- 
tances (as expected from confinement). This wave function was calculated in 
the quenched approximation, which has slightly too much asymptotic freedom 
due to the absence of light quark loops. It would not be surprising to find that 
the same calculations repeated in the full theory showed slightly less concavity 
in the wwe function, perhaps of order 20% less (c fl~f=3/&“zo = g/11). The 
effects of finite boundary conditions can be s&n half way across the lattice, 



at r = 12 in lattice units. 

The Light Eadmn5pectrum 

Calculations involving light quarks are significantly more difficult than those 
with only heavy quarks. One cannot estimate as accurately in advance what 
order of correction operators must be added to the action to achieve a certain 
accuracy in finite lattice spacing errors, or what volume must be used to reduce 
finite volume errors to a negligible level. These things must be determined to a 
much greater degree by painstaking experimentation. Light quark propagators 
are much more costly computationally. Effects of light quark loops are likely 
to be more complicated than for quarkonia. 

Current algorithms for calculating light quark algorithms fail when the light 
quark mass rnr s (m, + md)/2 is reduced toward its physical value. The 
extrapolation is likely to be reasonably straightforward for such quantities as 
m, and fx whose chiral behavior is well understood. The masses of particles 
like the p which become unstable in the small m, large V limit clearly require 
special care in extrapolating to mr + 0. (12) (The correlation functions from 
which Mp is determined become dominated by the two pion cut, rather than 
the p pole in the physical limit.) The proton mass is also known to have 
much larger nonlinear corrections in chiral perturbation theory than m, and 
fi do when ml is raised above m.. (13) Analogous effects in Mp occur in 
the quenched approximation with different coefficients. In addition, there are 
indications in quenched chiral perturbation theory calculations of pathologies 
as ml + 0, which so far have not been reconciled with numerical results. (14) 

The most systematic attempt so far at calculating the hadron spectrum 
in the quenched approximation appeared this year from the GFll collabo- 
ration. (15) The calculation was performed at several values each of lattice 
spacing, volume, and quark mass, with the results extrapolated to the phys- 
ical values of each. The resulting spectrum is shown in Fig. 3. M, and Mx 
have been used as inputs to set the quark masses. The error bars include 
statistics, finite volume, and ml - 0 extrapolations (assuming linear behav- 
ior in ml). They do not include uncertainties due the finite lattice spacing 
extrapolation and to the quenched approximation. The dominant finite lat- 
tice spacing errors can be removed by adding a single correction operator to 
the action. A calculation with a tree level improved O(Q) corrected action has 
been performed at a single small lattice spacing, with results that appear to 
be consistent with these extrapolated results (though with larger statistical 
errors). (16) 

Adding light quark loops to the calculation is much more expensive. The 
state of uncertainty analysis is therefore somewhat less advanced than for the 
quenched theory. Even more than for quenched calculations, algorithms begin 
to fail as the quark mass is reduced. The light quark mars can be reduced 
only to around 0.4 m.; results must then be extrapolated to the physical limit. 
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FIG. 3. The spectrum of the light hadrona in the qua&zd approximation, utrap- 
dated to zero lattice spacing, k&ire volume, and physical quark maso. Error bars 
do not include uncertainties due to the quenched approximation or to finite lattice 
spacing. + denotes experiment. 
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FIG. 4. The pioo decay constant calculated in full QCD with two light flavors, BS a 
function of the quark mass. Light h&on results must at present be extrapolated to 
the physical quark mass because algorithms fail when the me.ss becomes too small. 



Fig. 4 shows an unquenched calculation off- (17), which may be the simplest 
light hadron quantity to obtain other than the pion mass. Chiral perturbation 
theory leads us to expect it to have a small and smooth extrapolation to the 
chiral limit, compared with Mp and Mp. The calculation used two light flavors 
of quarks in the sea, the lattice quark masses of 0.02 and 0.01 correspond 
roughly to m, and m./Z. The size of the extrapolation from mr E m,/2 
(Mi z Mi) is consistent with expectations based on the experimental value 
of f;lf:. Some sources of errur have been carefully checked: consistency 
between values of fr obtained from various operators has been tested, the 
effects of finite volume on M, have been tested to be under 1% (finite volume 
effects on Mp and Mp are much larger). Yet to be checked are the effects of 
finite volume on fc itself, the agreement of fi as a function of mr with chiral 
perturbation theory, and the effects of finite lattice spacing. 

The algorithmic restriction to unphysically large light quark masses teems 
likely to be with us for a while. As the various sources of uncertainty in un- 
quenched calculations gradually become better understood, one of the impor- 
tant questions for consumers of lattice calculations will become: which quanti- 
ties have the smoothest and best understood extrapolations from ml FT m./2 
down to the physical light mass limit? 

The Fundamental Parameters of QCD 

From the standpoint of standard model physics, one of the most crucial re- 
sults of hadron spectrum calculations is the determination of the fundamental 
parameters of QCD: the strong coupling constant, a., and the quark masses. 
Such calculations have two elements. First, one calculates a measurable di- 
mensionful quantity such as fi or a level splitting in the + or T system, to 
set the lattice energy scale in physical units. This appears to be the least 
important source of uncertainty in such calculations. Second, one determines 
the physical coupling at short distances. This may be done either by a) relat- 
ing the bare lattice parameter to a conventional definition (MS, for example) 
via renormalization group improved, mean field improved perturbation the- 
ory, or better still, by b) ignoring the bare l&tie parameters (which are often 
somewhat pathological compared with physically defined parameters) and ex- 
tracting the physical parameters nonperturbatively from short distance lattice 
calculations. 

If the calculations are done in the quenched approximation, one must also 
estimate the asociated corrections and uncertainties. The expected effects 
in the T meson ,are illustrated in Fig. 5 Omission of quark loops from the 
theory results in too large a p function. If parameters are set by adjusting 
middle distance physics such as the lP-1s splitting to be right, the coupling 
constant at short distances will be slightly too small, as illustrated in the 
left hand figure. The size of the effect may be estimated with the aid of 
potential models in advance of including sea quarks from first principles. Very 
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FIG. 5. Expected running of the strong coupling constant (left) and the b quark 
m-8 (right) between the energy scale of T physics (around 600-1100 MeV) and 
the lattice spacing scale r/o at which the coupling is extracted [around 3-6 GeV). 
Dotted lines are the quenched approximation, solid lines are full QCD. 

roughly, the expected size of the effect is of order &“‘“/P,““” = 9/11. The 
“running mass” of the TV quark, on the other hand, does not run for pz < mt. 
The effective n1a4s determined at the lattice spacing scale is the same mass 
governing the dynamics at the much lower scale of Y physics, whether or not 
the effects of light quark loops are included. This fact makes rnb the most 
reliably known of the parameters of QCD. The light quark masses are more 
difficult, since we have no way of reliably estimating the effects of quark loops 
without including them from first principles. 

The Strong Coupling Constant 

To obtain the the lattice scale in physical units for use in a lattice deter- 
mination of the strong coupling constant, spin-averaged level splittings in the 
U, and T systems are particularly useful quantities, for reasons already dis- 
cussed. Uncertainties arising from usual lattice errors such as finite V, finite 
a, and statistics are quite small and seem to be under very good control. 
The dominant uncertainties in a. determinations are arise from perturbation 
theory, and, for the present, the quenched approximation. 

There are very large perturb&w one loop corrections in the relation be- 
tween the bare lattice coupling constant and physically defined coupling con- 
stants. These; however, are no more significant than the large corrections 
in the relation between the MS and m couplings. (18) The most sensible 
expansion parameter need not be the one which is simplest in terms of the 
regulator: it must be determined from physical quantities. The bare coupling 
constants may be rather pathological expansion parameters. The origin of 
the large corrections can also be understood: they arise from tadpoles due to 
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higher dimension operators in the Wilson lattice action. If such effects are 
taken into account with mean field theory estimates, a large number of per- 
turbative series for pure gauge theory, Win fermions, and NRQCD become 
very convergent. Mean field theory improvement may also be used be used to 
estimate higher order uncalculated terms in lattice perturbation theory. 

In Ref. (19), a mean field improved perturbation theory was used to extract 
the renormalized coupling from the bare lattice coupling. Subsequent nonper- 
turbative extractions of us from a variety of lattice quantities yielded results 
which were systematically a few per cent higher than the coupling obtained 
through the mean field improved relation with the bare coupling. (1830) (See 
also (?I).) This has resulted in a small but significant increase in the present 
values of a, over those reported in Ref. (19). 

The largest source of uncertainty in current determinations of (I*, and the 
one under poorest control is the use of potential models and perturbation the- 
ory to estimate the effects of light quark loops on the results. It is clear that 
the quenched theory, with too strong a 0 function, ought to have too weak 
an a. at short distances. For the ‘I system, potential models and ordinary 
perturbation theory yield similar estimates for the increase in the running for 
the quenched theory between the scale of T physics and the cutoff scale. (Po- 
tential models suggest 600-1100 MeV for typical gluon momentum transfers 
in the T. (11)) The agreement of the much more sensitive correction for the 
$ system provides some check on the consistency of the analysis. 

The first checks of these estimates from first principles have now appeared. 
(22). With large errors, the results so far are consistent with the quenched 
S.d+S. 

The preliminary results for the latest analyses of (I~ determined in the 
quenched approximation (10,ll) are consistent with 

a,(&) = 0.110 f 0.004. (1) 

The Heavy Quark Mawes 

Since the effective mass of fermioos does not run at energy scales below 
the pole mass, determinations of m, and rnb do not suffer from the largest 
effect due to the quenched approximation in the determinations of a. and ml: 
the running of the effective coupling or mars between the physics scale and 
the short distance scale at which the coupling is determined. The NRQCD 
collaboration has determined ma in two independent ways, with compatible 
results. In method 1, one calculates the binding energy, the difference between 
the bare quark masses and the physical mass of the T. This lattice result is 
then subtracted from the experimental mass of the T to obtain 2mb. In 
method 2, one determines the coefficient 1/2n required in the quark’s kinetic 
energy to obtain the correct energy-momentum relation for the Y. The largest 
uncertainty in each case arises from perturbation theory, estimated at l-2% 
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for method 1, and 2-3% for method 2. Uncertainties arising from finite lattice 
spacing, finite volume, and statistics are estimated to be 1% or less. The result 
for the pole mass is 

Using (23) 

nab = 4.7 ic 0.1 GeV. (2) 

a.(m) mdp = m) = m,,d(~ + 4t3- + 12.4( Fy+...) (3) 

and a&4.7 GeV) E 0.18 one obtains 

for the b quark. 

md4.7 GeV) = 4.2 f 0.1 GeV (4) 

The mass of the c quark will soun be reported based on these same meth- 
ods. It will be relatively less accurate then mb because the errurs arising from 
an additive mars renormalization are larger relative to m, then to mb, and 
because the required perturbation theory is less accurate at 11 energy scales 
(under 700 MeV, according to potential models) then at T energy scales (un- 
der 600-1100 MeV). 

The t quark is expected to decay before it forms QCD bound states. Lattice 
methods are unlikely to contribute to determining its mass. 

The Light Quark Mosses 

The light quark masses are the most difficult of the fundamental parameters 
of QCD to determine. There is certainly significant running of the quark 
masses between the lattice spacing scale and the scale of light hadron physics. 
However, there is no hope of estimating the effects of light quark loops on this 
running at large distances: unquenched calculations are required from the 
start. However, m,, the obvious choice to determine ml. is by far the easiest 
of the light hadron masses to determine, so thii calculation is likely to be 
among the first to performed reliably in unquenched calculations. The current 
status of determinations of mr in the MS scheme is summarized in Fig. 6 
(24). Calculations have been performed with Wilson fermions and staggered 
(KS, or Kogut-Susskind) fermions, in the quenched approximation (A’, = 0) 
and with two flavors of tight quarks (NJ = 2). The calculations employing 
staggered fermions are nicely independent of the lattice spacing, while those 
using Wiion fermions show significant variation, seeming to approach the 
staggered results as the lattice spacing is reduced. (This may be related to 
the fact that the lattice spacing errors in the quark propagators start at O(a) 
for Wilson fermions and O(n*) for staggered.) This is a pity, because the 
perturbation theory for the relation between the bare staggered fermion mass 
and the m mass is much worse behaved than the analogous perturbation 
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FIG. 6. Lattice determinatiolu of the light quark mau in MeV, EA a function of 
0 s 6/g’. Smaller lattice spacings (i. e., more cmreet results) are to the right. 

theory Wilson fenniona or NRQCD. There is roughly a 40% effect in thii 
relation which has not been understood in terms of either renormalization 
group logarithms or mean field theory tadpoles. 

Current results from staggered fermions ( m, - 2 MeV) are at the low end 
of the conventional range, but it is not known yet how reliable these are. 

There are thus several ways in which the determination of the light quark 
masses is more difficult than the determination of a, and the heavy quark 
masses: unquenched calculations are required from the start, the perturbation 
theory is less well understood, and nonperturbative techniques for extracting 
the short distance quark mass are less well developed. On the other hand, 
mr is known from existing phenomenology to within only s factor of three (aa 
opposed to 5-20% for the other quantities) so the payoff will ultimately be 
bigger. 

WEAK MATRIX ELEMENTS 

As long as it is the case that the only clues available to us about the theory 
lying behind the standard model are the apparently arbitrary “fundamental” 
parameters of the model, one of the most important applications of lattice 
gauge theory will be the calculations of the hadronic weak matrix elements 
that allow the extraction of the elements of the Cabibbo-Kobayasbi-Moskawa 
matrix elements from hadron decay data. The hadronic matrix elements for 
extracting Vud and V., can be estimated with sufficient accuracy by employing 



12 

SU(2) and SU(3) Ravor symmetry, respectively, so that lattice calculations 
are unlikely to be of much assistance until they are much more accurate. For 
the remaining CKM matrix elements, lattice calculations will eventually play 
a crucial role. For the elements connecting b and c quarks for lighter quarks, 
exclusive semileptonic meson decays are the most feasible lattice calculations. 
Cabibbo suppressed semileptonic decays of the t quark are not likely to be 
observed any time soon. The indirect effects of the t quark in neutral meson 
mixing amplitudes are the likeliest sources of information on CKM matrix 
elements involving the t quark. We will discuss some of these amplitudes in 
order of increasing difficulty. 

The simplest and best understood of these weak matrix elements is the kaon 
"B parameter”, 

which is required to relate CP violation in kaons to the parameters of the 
CKM matrix. There is a variety of reasons for this. 

l The amplitude involves only pseudo scalars, which have the best statis- 
tics and finite volume errors of the light hadrons. 

l Calculations for kaons may be performed with mr = m,J2 and extrap- 
olated in m. - md to the physical values. Chiral perturbation theory 
shows this to be a more benign extrapolation then the usual md - 0 
limit. (It is a higher order effect in chiral perturbation theory.) 

l BK is a ratio of two very similar amplitudes, in which many errors (such 
as those arising from perturbation theory and the quenched approxima- 
tion are likely to cancel. 

As is typical in calculations with light pseudoscalar mesons, the cleanest re- 
sults are produced with staggered fermions, which preserve an exact chiral 
symmetry at the expense of “doubling” of the light flavors. (25) 

Many of the assumptions in the calculation have been checked in the last 
year. The one loop perturbative corrections have been checked. (26) The 
independence of the result on the use of gauge variant vs. gauge invariant 
operators has been tested. (27) The hope that the effects of the quenched 
approximation are small has been tested explicitly. (27,28) 

The most important new result is an improved understanding of the source 
of the rather large finite lattice spacing dependence, which has previously 
dominated the uncertainty. Such lattice spacing dependence in weak ampli- 
tudes can arise from powers of a due to discretization errors, and from powers 
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FIG. 7. BK in the naive dimensional reduction scheme as a fnnction of the lattice 
spacing squared. Results for two different types of four-quark operators have the 
same a + 0 limit. 

of I/ In a due to perturbation theory. The perturbative corrections are small, 
mostly canceling between the numerator and denominator in Eqn. 5. They 
are unlikely to contribute much to the finite a effects. (This is in contreat with 
come previous examples of finite a dependence such as in the string tension, 
where a large dependence of u/A& on a is now understood to have arisen 
predominantly from the use of bare lattice perturbation theory~ rather than 
reuormalized perturbation theory.) This leaves the question of the power in a 
of the effects of discretization. The Staggered Collaboration has very recently 
completed an examination of all of the dimension 7 operators capable of pro- 
ducing O(u) errors in BK for staggered fermions. (29) They have found that 
among the many such operators, none has the right tlavor and lattice symme- 
tries to contribute to the amplitude for Bi. They therefore extrapolate their 
small lattice spacing data in a’ + 0 (Fig. 7) to obtain their final answer. 

The current result in the naive dimensional reduction scheme, with esti- 
mates of the known sources of uncertainty, is 

E~(NDR,2GeV) = 0.616f 0.020 (stat) 



zt 0.014 (gZ) 

f 0.009 (scale) 

f 0.004 (operator) 

l 0.002 (correction) 

= 0.616 f 0.020 f 0.017. 

For the renormalization group invariant B parameter, they obtain 

gK s BK(NDR,~G~V) a,(2GeV)-B’ZS 

= 0.825 f 0.027 f ,023. 

For comparison, the l/N expansion predicts 3~ = 0.7fO.l. (30) A further 
check which has yet to be done is to test explicitly whether the extrapolation 
to the physical value of m. - md is as small when quark loops are included as 
it has been shown to be in the quenched approximation. 

Heavy Mason Decay Constants 

The special simplicities arising in BK from the fact that it is a ratio of 
two similar amplitudes are not shared by typical weak decay amplitudes such 
as heavy meson decay constants. In particular, there is no reason to expect 
perturbative corrections end the effects of the quenched approximation to be 
particularly small. 

fD. is the only heavy meson decay constant which can be directly com- 
pared with experiment. It will therefore play an important role in validating 
methods for calculating decay constants as theory and experiment become 
more precise. Fig. 8 shows the lattice results for this quantity, using “im- 
proved” (in terms of finite lattice spacing errors) light quark methods. They 
are f~. = 230 f 35 MeV (31) and 21g+p MeV (32). They may be compared 
with the experimental numbers 232 f 69 MeV from WA75 (33) and 344 do 76 
MeV from CLEO (34). The analysis going into the lattice uncertainties is 
not as detailed as that behind Bn. The numbers have remained reasonably 
stable, however, as the calculational methods have improved over the last few 
YeUS. 

The B meson decay constant fe is ofzen greater pheuomenological inter- 
est because of its role in describing BOB0 mixing, and much work has been 
invested in it recently. Initial lattice cnlculations in the static limit produced 
results which were very high (over 300 MeV), compared with expectations 
from quark model estimates. (35) Subsequent work revealed several sources of 
mostly negative corrections, and a final consensus has not yet emerged, even 
in the quenched approximation and in the static limit. Current estimates 
range from 185 to 370 MeV. (31,32,36-38) 

An example of a correction which is still in the process of being sorted out is 
shown in Fig. 9. (38) More dependenceon the lattice spacing is observed than 
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FIG. 8. The decay constant of the D. meson, from lattice calculations (left two 
points). compared with experimental results from CLEO (third point) and WA75 
(last point). 

was apparent originally. (36,38) Part of this a dependence arises from higher 
orders of perturbation theory which fall like logarithms of a a4 a - 0, and 
can be at least partially ameliorated with the use of improved perturbation 
theory. On the other hand, part of it may also come from disc&z&on errors 
which fall as powers of a. Until the functional form of the a dependence is 
understood, an a -t 0 extrapolation cannot be made with confidence. 

Ratios of decay constants can be calculated more accurately. Current results 
for ja,/js (= j~~/j~(l+O(m./m,) (39)) in the quenched approximation lie 
in the range 1.11-1.22. (31,32,36,37) The effects of adding quark loops to these 
calculations may be estimated from the one loop chiral perturbation theory 
calculations of these quantities, which give j~./j~ = j~./jo = 1.1. (40) 
Ultimately, on would hope to calculate the deviations of these ratios from 
unity as accurately as the decay constants themselves: that is, j~./j,g - 1, 
Jo,/ Jo - 1, and eventually js/ Jo - 1 to perhaps 20%. 

The hadronic amplitude for B”F mixing may be written in terms of Jo 
and a E parameter, following the notation of the K system. In the standard 
model, the parameter measuring the experimentally observed B”Bo mixing is 
given by 

z,, = (known factors) [I',;%[* jib. (6) 

Pilot studies of Be and Bs. have been performed which yielded results close 
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f-B vs lattice spacing 
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FIG. 9. The decay constant of the B meson, fs, in the static approximation, as a 
function of the lattice spacing a. 

to the “vacuum saturation” value of one. (41) 

Semileptonic Decays 

Semileptonic decay amplitudes share all of the difficulties of decay con- 
stants. In addition, 

l large momentum in the decay meson leads to worse finite lattice spacing 
errors and worse statistics, 

l finite lattice volume leads to a coarse decay momentum discretization, 
and 

l calculations for many decay momenta are required, each of which is as 
difficult as a decay constant calculation. 

Although lattice calculations are first principles calculations, it is perhaps 
fair they are treated in competition with sum rules and quark models at the 
present stage of the game. (42) Getting the level of detail and the accuracy 
of the uncertainty analysis for these processes to match that already obtained 
for BK will be a long process, even if all goes relatively well. However, there 
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FIG. 10. The @r-Wise function calculated on the lattice compared with B decay 
data from CLEO. 

is no obstacle presently known to eventually getting semileptonic decays into 
comparably good shape (other than the requirement of doing a lot of work). 

Most lattice work on this area in the last two years has focused on the 
calculation of the Isgur-Wise function [(v. v’) on the lattice. Two approaches 
have been investigated: 

1. Direct formulation of an action for quarks in the m - 00 limit for finite 
velocity. (43) (This is analogous to the static approximation for u = 0.) 

2. Use of light quark methods to calculate D meson elastic scattering 
(44,45), using 

(D”~lWPCld,) = au u’)(p+ & + O(A/m,). (7) 

Fig. 10 shows the Isgur-Wise function calculated in the second approach in 
Ref. (45), compared with E decay data from CLEO. The lattice error bars 
do not explicitly include uncertainties arising from finite lattice spacing, fi- 
nite volume, the quenched approximation, or l/m, effects. E(O) = 0 has 
been used to normalize the lattice results. The lattice calculations are not 



18 

yet accurate enough to determine the curvature of the function, so what is 
really being calculated is the slope. Using the Stech-Neubert-Rieckert param- 
eterization of the function, the lattice groups quote for the shape parameter 
p2 = 1.41(0.19)(0.19) (44), and p* = 1.6:: (45), which are compatible results 
from sum rules and from fitting the shape of the data directly. The values 
of \I’,,( obtained by the lattice groups are therefore compatible with those 
obtained from other analyses. Normalizing to a B lifetime of 1.50 ps, they 
obtain /VcblJs = 0.044 in Ref. (44) and 0.043(2)(t) in Ref. (45). In 
the errors quoted in Ref. (45), the first error is experimental, the second is 
part of the theoretical uncertainty. 

CONCLUSIONS 

There are now several lattice calculations (BK, ma, a.) for which at least a 
first attempt has been made to examine all of the largest sources of uncertainty 
quantitatively. These uncertainty estimates are not yet on a par with the 
analysis of 9 - 2 for the electron (although eventually they should be), but 
they are quite competitive with the analysis of theoretical uncertainties in 
short distance perturbative QCD processes. 

The calculations which are currently best understood are in one way or an- 
other special cases, simpler than the generic lattice calculation. However, they 
and many others of the most interesting phenomenological calculations (de- 
cay constants, B parameters, many semileptonic decays) share certain other 
simplicities, which put them into a class which is likely to be doable over 
the next few years, assuming only programmatic rather than revolutionary 
improvements in methods. They involve hadconically stable mesons, either 
pseudoscalars or heavy quark-antiquark. They involve processes with a single 
hadron existing at a time. 

Baryons and unstable mesons are likely to prove a bit more demanding, 
though still well within the range of current methods. More demanding still 
will be processes involving more than one hadron. (Conceptual problems 
involving final state interactions in imaginary time, as is used in lattice cal- 
culations, have yet to be worked out in practical applications.) The most 
phenomenologically important of these are the hadronic kaon decay ampli- 
tudes necessary for the analysis of CP violation in the K system. Farther 
away still are such things aa a full nonperturbative calculation of high en- 
ergy PP scattering, which are certainly not immediate prospects. Setting 
our sights even higher, one would like eventually to have lattice methods that 
worked for chiral gauge theories, so that nonperturbative beyond the standard 
model physics could be investigated in a reliable and straightforward way. No 
proposed method for such theories has so far been proven to work. It is not 
yet known whether this is a result of simple technical difficulties which are 
unusually complicated, or whether it is an indication of something deep about 
these theories which ha not yet been sufficiently appreciated. 
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There are many goals ahead of us, not all of which are yet within either 
our grasp or our reach. On the other hand, most (though not all) of the 

calculations which are most crucial in extracting the fundamental parameters 
of the standard model from experiment are in the simplest class of lattice 
calculations: they involve single, stable mesons. The simplest of these have 
now been completed with uncertainty estimates. There is a good hope that 
these uncertainty estimates can be made very solid, and that many more 
simple but important calculations will join them over the next few years. 
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